Cationic Methyl Platinum(II) Nitrile and Imino-ether Complexes

By H. C. CLARK* and L. E. MANZER

(Department of Chemistry, University of Western Ontario, London, Canada)

Summary Cationic methylplatinum(II) imino-ether and nitrile complexes have been isolated from reactions of trans-MeClPt(PMe₂Ph)₂ with perfluoronitriles and AgX, where $X = PF_6^-$ and BF_4^- , in the presence of alcohols.

one σ -bonded nitrile, in which $\nu(C \equiv N)$ is shifted slightly to higher frequency.

A plausible mechanism for imino-ether formation is based on a transition-metal-stabilised carbonium ion.7

Initial π -bond formation (A) is apparently essential for ALCOHOLS have recently been shown to react with conucleophilic attack, since refluxing of the σ -bonded coordinated unsaturated systems such as isocyanides¹⁻³ and ordinated dinitrile in methanol did not lead to imino-ether

$$\{PtMeQ_{2}[NH=C(OMe)-C_{6}F_{4}-C(OMe)=NH]PtMeQ_{2}\}(BF_{4})_{2}$$

$$\uparrow MeOH EtOH Pr^{n}OH Pr^{n}OH$$

$$\{PtMeQ_{2}[\pi-NC-C_{6}F_{4}-C(OEt)=NH]PtMeQ_{2}\}(BF_{4})_{2}$$

$$\downarrow Pr^{n}OH$$

$$\{PtMeQ_{2}[NH=C(OPr^{n})C_{6}F_{4}-CN]PtMeQ_{2}\}(BF_{4})_{2}$$

$$\downarrow Me_{2}CO$$

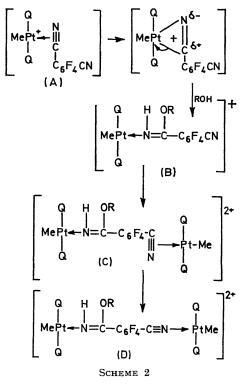
$$Me_{2}CHOH$$

$$(PtMeQ_{2}(NC-C_{6}F_{4}-CN)PtMeQ_{2}](BF_{4})_{2}$$

$$MeOH \downarrow reflux$$
o nucleophilic attack.

SCHEME 1

acetylenes⁴ to yield various carbene complexes. We now report the first examples of nucleophilic attack by alcohols at co-ordinated nitriles to give imino-ether complexes. trans-MeClPtQ₂ (Q = PhMe₂P) (I) with pentafluorobenzonitrile and silver hexafluorophosphate in methanol at 25° gives trans-[MePt(NCC₆ F_5)Q₂]+PF₆-, in which the nitrile is a σ -donor as shown by the increase⁵ of $\nu(C=N)$ to 2274 cm⁻¹. However, with silver tetrafluoroborate, the iminoether complex trans-[MePt(NH=C(OMe)C₆F₅)Q₂]BF₄ was obtained, which showed no $\nu(C \equiv N)$ but $\nu(C = N)$ at 1653 cm⁻¹.


N

No

2,3,5,6-Tetrafluoroterephthalonitrile (II) and silver tetrafluoroborate gave various products (Scheme 1) depending on the alcohol.

All the imino-ether complexes show strong, sharp v(C=N) Raman and i.r. absorptions in the 1630–1660 cm⁻¹ region. I.r. absorption due to v(N-H) appears as a weak peak at 3300-3400 cm⁻¹. The ¹H n.m.r. spectra of the co-ordinated imino-ether complexes show N-H resonances as broadened singlets at δ (NH) ca. -9.10 p.p.m. Platinum-methyl resonances, where δ (Me) is in the region -0.60 to -0.20 p.p.m. show J (Pt-C-H) ca. 80 Hz, when methyl is trans to σ -bonded nitrile and about 75 Hz when methyl is trans to imino-ether, indicating a stronger trans influence⁶ for the co-ordinated imino-ether.

In the reaction with ethanol, just described in Scheme 1, the product contains an imino-ether group, shown by v(C=N) at 1648 cm⁻¹, as well as a π -bonded nitrile group. This is revealed spectroscopically by the shift to lower frequency of the $v(C \equiv N)$ i.r. absorption by 119 to 2141 cm⁻¹. In contrast, the product with n-propanol contains

formation. It is also consistent with characterisation of the π -bonded function in the ethanol product just described.

The apparent decrease in the reactivity of the second nitrile group of the ligand, for different alcohols in the order $MeOH > EtOH > Pr^nOH > Pr^iOH$, $(CF_3)_2CHOH$, may be due to the large steric requirements of the -OR and C_6F_4 groups. However, these reactions are also anion dependent; the reactions with pentafluorobenzonitrile described above illustrate this. Also, silver hexafluorophosphate and trans-MeClPtQ₂ ($Q = PhMe_2P$ or Me_3As) with (II) in methanol give attack at only one nitrile, the second being σ -bonded to platinum. Reactions in ethanol and higher alcohols, again using the hexafluorophosphate, gave the σ -bonded dinitriles. We studied various aromatic nitriles, including terephthalonitrile, but observed nucleophilic attack by alcohols only with the perfluoronitriles.

With perfluoroalkylnitriles, such as CF₃CN, dealkylation of the nitrile occurs,8 to give methylplatinum complexes which are currently being studied, but which contain no perfluoroalkyl groups.

(Received, January 18th, 1971; Com. 090.)

- ¹ B. Crociani and T. Boschi, J. Organometallic Chem., 1970, 24, C1.
 ² E. M. Badley, J. Chatt, R. L. Richards, and G. A. Sim, Chem. Comm., 1969, 1322.
 ³ B. Crociani, T. Boschi, and U. Belluco, Inorg. Chem., 1970, 9, 2021.
 ⁴ M. H. Chisholm and H. C. Clark, Chem. Comm., 1970, 763.
 ⁵ B. A. Walton, Curvert Env. 1965, 10, 126

- ⁵ R. A. Walton, Quart. Rev., 1965, 19, 126.
- ⁶ H. C. Clark and J. D. Ruddick, *Inorg. Chem.*, 1970, 9, 1226.
 ⁷ M. H. Chisholm, H. C. Clark, and D. H. Hunter, *Chem. Comm.*, submitted for publication.
 ⁸ P. M. Treichel and R. W. Hess, *Chem. Comm.*, 1970, 1626.